
ISSN: 2395-6607, Vol. 1, No. 1 March 2015, pp. 28–34 

MATCHING PRECLUSION NUMBER OF  
RADIX TRIANGULAR MESH 

D. Antony Xavier1 and Deeni C.J.2 
Department of Mathematics, Loyola College, Chennai–34 

E-mail: 2srdeenicj@gmail.com 

Abstract—In this paper we use the concepts of matching,perfect matching, matching preclusion number, and 
conditional matching preclusion number. A radix triangular mesh denoted as Tn, consists of a set of vertices 
V(Tn) = { (x,y) / 0 ≤ x+y ≤ n}. Where any two vertices (x1,y1) and (x2,y2) are connected by an edge if │ 
x1 - x2│+ y1 - y2 < n-1. In this paper we find out the values of mp (Tn) when n(n+1) ≡ 0(mod 4). 
Minimum matching preclusion in radix triangular mesh is trivial.  
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INTRODUCTION 

Let G be a graph of order n, and also consider this n is even. A matching M of G is a 
set of pairwise non-adjacent edges. A perfect matching in G is a set of edges such that 
every vertex is incident with exactly one edge in this set. The matching preclusion 
number of graph G, denoted by mp (G), is the minimum number of edges whose 
deletion leaves the resulting graph without a perfect matching. Mp (G) = 0 if G has no 
perfect matching’s. The concept of matching preclusion was introduced by Birgham 
et.al [7] and further studied by Cheng and Liptak [1, 2] with special attention given to 
interconnection networks. In [2] Park also put forward some results on this perfect 
matching. In [7], the matching preclusion number was determined for three classes of 
graphs, namely, the complete graphs, the complete bipartite graphs Kn,n and the 
hypercube. Hypercube are classical in the area of interconnection networks, and have 
generated a considerable amount or research including fault tolerant routings, strong 
connectivity properties, various Hamiltonian properties and some others also. In 
certain applications, every vertex requires a special partner at any given time and the 
matching preclusion number measures the robustness of this requirement in the 
event of edge failures as indicated in [7]. Hence in these interconnection networks, it 
is desirable to have the property that the only optimal matching preclusion sets are 
those whose elements are incident to a single vertex. The following propositions  
are obvious. 

PROPOSITION 

Let G be a graph with an even number of vertices. Then mp(G) ≤ ߜ(G), where, ߜ(G) is 
the minimum degree of G. 

In [4] E. Cheng et.al proved somany results related to k-regular bipartite graph.  
If we gone through the literature survey [2, 5, 8] the authors proved various results 
related to the perfect matching preclusion number and conditional matching 
preclusion number of different types of graphs and networks. 

In the next section we find out the matching preclusion number of radix triangular 
mesh. 

MATCHING PRECLUSION FOR RADIX N TRIANGULAR MESH 

Definition [6] A radix n-triangular mesh network, denoted as Tn, consists of a set of 
vertices V (Tn) ={ (x,y)/ 0 ≤ x + y ≤ n} where any two vertices (x1,y1) and (x2,y2) are 
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connected by an edge if and only if │x1-x2│+ │y1-y2│ = n – 1. The number of vertices 
and edges in Tn is equal to n (n+1)/2 and 3n(n-1)/2 respectively. 

 
Fig. 2.1: Radix Triangular Mesh T7 

Lemma 2.1 [6] Any triangular mesh network Tn is Hamiltonian. (See figure 2.2) 
Lemma 2.2 Let n be an integer and n(n+1) ≡ 0( mod 4). Then Tn has exactly two 

edge disjoint perfect matching’s. 
Proof: 
Alternative edges in a Hamiltonian cycle will form two edge disjoint perfect 

matching M1 and M2. 

Let the edge (0,0) and (1,0) M1, Then (0,0) and (0,1)  M2.. Suppose M3 is another 
perfect matching in Tn. Then M3 contains either (0,0), (1,0) or (0,0),(0,1).This implies 
that M3 is not edge disjoint perfect matching from M1 and M2. 

 
Fig. 2.2: Hamiltonian Cycle in Tn 

Theorem 2.1 

Let n> 3 be an integer and n(n+1) ≡ 0(mod 4). Then mp(Tn) = 2 

Proof: 
By Lemma 2.2,Tn has two edge disjoint perfect matching’s M1 and M2.  

mp(Tn) > 1 
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But mp(Tn) ≤ δ =2 by prop 1.1 

mp(Tn) = 2 

Theorem 2.2 

Let n> 3 be an integer and n(n+1) ≡ 0(mod 4). Then every minimum matching 
preclusion set in Tn is trivial. 

Proof 

According to Lemma 2.2, Tn has two edge disjoint perfect matching’s and let it be 
M1and M2. Assume that, the edges r = (0,0),(1,0) ∈ M1 and s = (0,0),(0,1) ∈ M2. By 
Theorem 2.1, mp (Tn) = 2.  

Let F be the preclusion set in Tn and │F│ = 2. Let F =  ,x y  

Case (1) Let 1,x y M . 

Then M2Tn – F  

Similarly x,y M2. 

Case (2) 1x M and  1, 2ny T M M   

Then M2Tn – F. 

Case (3) Let x = sM2, y M1 and y  r,y is an interior edge. 

Suppose y is an interior edge of Tn. Then y is a side of a parallelogram. 

Clearly opposite side of the parallelogram is also in M1. 

 
Fig. 2.3 

Let y = (i,j),(i+1,j) ∈ M1 and clearly the opposite side of the parallelogram is also in 
M1i,e. (i,j+1),(i+1,j+1) ∈ M1. Now M1 + [(i,j)(i,j+1), (i+1,j)(i+1,j+1)]– [y, (i,j+1)(i+1,j+1) ] is a 
perfect matching in Tn – F. 

Case(4) Let x = s  M2, y M1 and y  r,y is a boundary edge. 

Let y = (i,j),(i,j+1)  

 
Fig. 2.4 

Similar as Case (3). 
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(b) Let y = (i+2,j),(i+1,j+1)  

 
Fig. 2.5 

 Then (i,j), (i+1,j), (i-1,j+1), (i,j+1) ∈ M1. Now M1 + [(i,j)(i-1,j+1), (i,j+1)(i+1,j+1), 
(i+1,j)(i+2,j)]–[y, (i,j)(i+1,j), (i-1,j+1)(i,j+1)] is a perfect matching in Tn–F. 

(c) Let y = (i,j),(i,j+1)  

 
Fig. 2.6 

Then (i+1,j),(i+2,j), (i+1,j+1),(i,j+2) ∈ M1. Now M1 + [(i,j)(i+1,j), 
(i,j+1)(i,j+2),(i+2,j)(i+1,j+1)]–[y, (i+1,j)(i+2,j),(i+1,j+1)(i,j+2)] is a perfect matching inTn – 
F. 

Case (5) Let x = s  M2, y M1 and y  r,y is a corner boundary edge. 

Let y = (i+1,j+1),(i,j+2) 

 
Fig. 2.7 

Then (i+1,j),(i+2,j), (i,j),(i,j+1) ∈ M1. Now M1 + [(i,j+1)(i,j+2), (i,j)(i+1,j),(i+1,j+1)(i+2,j)]–
[y, (i,j)(i,j+1),(i+1,j)(i+2,j)] is a perfect matching in Tn – F. 

Case (6) Let x ≠ s  M2, y M1 and y  r,y both are adjacent and interior edges. 

(a) Letx= (i+1,j),(i+1,j+1) M2, y = (i+1,j+1),(i+2,j+1) M1. 
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Fig. 2.8 

Then (i,j),(i,j+1), (i+1,j),(i+2,j) ∈ M1. Now M1 + [(i,j)(i+1,j), 
(i,j+1)(i+1,j+1),(i+2,j)(i+2,j+1)]–[y, (i,j)(i,j+1),(i+1,j)(i+2,j)] is a perfect matching in Tn – F. 

(b) Letx = (i,j+1),(i+1,j+1) M2, y = (i+1,j+1),(i+2,j+1) M1. 

 
Fig. 2.9 

Then (i+1,j),(i+2,j)∈ M1. Now M1 + [(i+1,j)(i+1,j+1), (i+2,j)(i+2,j+1)]–[y, (i+1,j)(i+2,j) ] is 
a perfect matching in Tn – F. 

Case (7) Let x ≠ s  M2, y M1 and y  r,y both are adjacent and any one is 
interior edge. 

(a) Letx = (i,j+2),(i+1,j+2) M2, y = (i+2,j+1),(i+1,j+2) M1. 

 
Fig. 2.11 

Then (i-2,j+2)(i-1,j+2), (i-1,j+1)(i,j+1),(i+1,j+1)(i+2,j+1), (i+1,j)(i+2,j)∈ M2and 

(i-1,j+2)(i,j+2), (i,j+1)(i+1,j+1)M1. Now M2 + [(i-1,j+1)(i-2,j+2), (i-1,j+2)(i,j+2), 
(i+1,j)(i,j+1), (i+1,j+1), (i+1,j+2), (i+2,j), (i+2,j+1)]–[x, (i-2,j+2)(i-1,j+2), (i-1,j+1)(i,j+1), 
(i+1,j+1)(i+2,j+1), (i+1,j)(i+2,j)] is a perfect matching in Tn – F. 

(b) Letx = (i+1,j+2),(i+1,j+3) M2, y = (i+1,j+3),(i,j+4) M1. 
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Fig. 2.12 

Then (i+1,j)(i+2,j), (i+1,j+1)(i+2,j+1),(i,j+1)(i,j+2), (i+3,j+1)(i+2,j+2),(i,j+3),(i,j+4)∈ M2. 

Now M2 + [(i+1,j)(i+2,j), (i+3,j)(i+4,j), (i,j+1)(i+1,j+1), (i+2,j+1)(i+3,j+1), (i,j+2)(i+1,j+2), 
(i+2,j+2), (i+1,j+3), (i,j+3), (i,j+4)]–[x, (i+1,j+1)(i+2,j+1), (i,j+1)(i,j+2), (i+3,j+1)(i+2,j+2)] is 
a perfect matching in Tn – F. 

(c) Letx = (i+3,j+1), (i+2,j+2) M2, y = (i+1,j+2), (i+2,j+2) M1. 

Fig. 2.13 

Then (i,j)(i,j+1), (i+1,j)(i+1,j+1), (i+2,j) (i+3,j), (i+2,j+1)(i+3,j+1), (i+1,j+2)(i+2,j+2), 
(i,j+2),(i,j+3), (i+1,j+3)(i,j+4)∈ M1. Now M1 + [(i,j)(i,j+1), (i+1,j)(i+1,j+1), (i+2,j)(i+3,j), 
(i+2,j+1)(i+3,j+1), (i,j+2)(i+1,j+2), (i+2,j+2)(i+1,j+3), (i,j+3),(i,j+4)] – [y, (i,j+2)(i,j+3), 
(i+1,j+3)(i,j+4) ] is a perfect matching in Tn – F. 
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