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Abstract—The purpose of the paper is to analyse the effects of injection/suction on an oscillatory flow of a 
viscous incompressible fluid in a rotating horizontal porous channel. The fluid is injected with constant 
velocity through the lower stationary plate and is being sucked simultaneously with the same constant 
velocity through the upper plate oscillating in its own plane about a non-zero constant mean velocity. A 
closed form solution has been obtained and the effects of injection/suction on the resultant velocities and 
shear stresses for steady and unsteady flows have been studied. 
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INTRODUCTION 

All fluid phenomena on earth involve rotation to a greater or lesser extent. Those in 
which rotation is an absolutely essential factor include the large scale circulation in 
the atmosphere and oceans, and so many other flows with small scale circulation. In 
the last few years a number of studies have appeared in the literature on rotating 
flows viz. Vidyanidhu and Nigam (1967) Gupta (1972) Jana and Datta (1977). 
Injection/ suction effects have also been studied extensively for horizontal porous 
plate in rotating frame of references by Gupta (1972a) Mazumder(1976) Mazumder  
et al. (1976) Soundalgekar and Pop (1973) for different physical situation. Recently, 
Mazumder (1991) studied an oscillatory Ekman boundary layer flow bounded by two 
horizontal flat plates, one of which is oscillating about a non-zero constant mean 
velocity and the other at rest. An alternative solution to this problem is later given by 
Ganapathy (1994). By taking hydro magnetic effect and oscillatory fow into account 
Singh et al. (2000, 2005, 2009) further improved the analysis. In the present paper it 
is proposed to study the injection/ suction effects on the oscillatory flow in a 
horizontal porous channel in a rotating system.  

MATHEMATICAL ANALYSIS 

An unsteady flow of a viscous, incompressible fluid is considered between two parallel 
porous horizontal plates distance d  apart. A constant injection velocity, w0, is applied 
at the lower stationary plate and the same constant suction velocity, w0, is applied at 
the upper plate which is oscillating in its own plane with a velocity )( ** tU  about a 
non-zero constant mean velocity 0U . Choose the origin on the lower plate lying in 

** yx   plane and *x -axis parallel to the direction of motion of the upper plate. The *z -
axis taken perpendicular to the planes of the plates, is the axis of rotation about 
which the entire system is rotating with a constant angular velocity * . Since the 
plates are infinite in extent, all the physical quantities except the pressure, depend 
only on *z  and *t . Denoting the velocity components *** ,, wvu  in the *** ,, zyx  
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directions, respectively, the flow in the rotating system is governed by the following 
equations:  

0* zw , (1) 

,2/ ******* vupuwu zzxzt    (2) 

,2/ ******* uvpvwv zzyzt    (3) 

Where,   is the Kinematic viscosity, t is the time,   is the density and *p  is the 
modified pressure. The boundary conditions for the problem are  

,0,,0 *
0

***  zatwwvu   
),cos1()( **

0
*** tUtUu    (4) 

,,,0 *
0

** dzatwwv    

Where, *  is the frequency of oscillations and   is a very small positive constant.  

The integration of the continuity equation (1) under boundary conditions (4) for *w  
gives, .0

* ww   Substituting .0
* ww   and eliminating the modified pressure gradient, 

under the usual boundary layer approximations, equations (2) and (3) reduce to  
*****

0
* 2 vUuuwu tzzzt   , (5) 

 *****
0

* 2 Uuvvwv zzzt   .  (6) 

Introducing the following non-dimensional quantities  

dz /* , **tt  , 0
* /Uuu  , 0

* /Uvv  , /2*d  the rotation parameter, 

 /2*d  the frequency parameter and /0dws   the injection/suction parameter, 
we get  

vUusuu tt  2  , (7) 
 vt +  Uuvsv  2 , (8) 

and the corresponding transformed boundary conditions become:  








.10,cos1)(
,00




atvttUu
atvu

  (9) 

Equation (7) and (8) can now be combined into a single equation, by introducing a 
complex function q = u +iv, as  

)(2 UqiUqsqq tt    , (10) 

and the boundary conditions (9) can also be written in complex notations as: 
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  









 .1
2

1)(

,00




ateetUq

atq

itit

 (11) 

In order to solve equation (10) subject to the boundary conditions (11), we look for 
a solution of the form  

        itit
o eqeqqtq   212

,
.  (12) 

Substituting (12) into (10) and (11) and comparing the harmonic and nonharmonic 
terms, we get  

2
0

2
00 lqlqsq  , (13) 

 2
1

2
11 mqmqsq  , (14) 

2
2

2
22 nqnqsq  ,   (15)  

with corresponding transformed boundary conditions  








,11
,00

210

210




atqqq
atqqq

 (16)  

Where,   2,2 22 imil  and   22 in . 

The solutions of equations (13) to (15) under the boundary conditions (16) are 
obtained as:  

        211221 /10
rrrrrr eeeeq    , (17)  

        433443 /11
rrrrrr eeeeq    , (18) 

        655665 /12
rrrrrr eeeeq    , (19) 

Where,  

  2/4 22
1 lssr  ,   2/4 22

2 lssr  ,   2/4 22
3 mssr  , 

,   2/4 22
5 nssr  ,   2/4 22

6 nssr  , 

RESULTS AND DISCUSSION 

Now for the resultant velocities and the shear stresses of the steady and unsteady 
flow, we write, 

      000 qivu   (20) 

And 

        itit eqeqivu   2111  (21) 

  2/4 22
4 mssr 
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The solution (17) corresponds to the steady part which gives u0 as the primary and 
v0 as the secondary velocity components. The amplitude and the phase difference due 
to these primary and secondary velocities for the steady flow are given by  

2
0

2
00 vuR  ,  00

1
0 /tan uv  (22) 

The amplitude or the resultant velocity Ro and the phase angle 0  for the steady 
part are shown graphically in figure 1.a, b for two cases of rotation parameter   
small (5, 10) and   large (25,50) and the injection/suction parameter s. It is observed 
from figure 1.a that for small rotation, , the resultant velocity Ro increases with the 
increase of the injection/suction parameter s (curves I, II) in the whole width of the 
channel. However, for large rotation and increase in s leads to a slight decrease in Ro 
near the stationary plate and to a slight increase in Ro thereafter in the channel 
(curves IV, V). This figure also reveals that the amplitude Ro goes on increasing with 
increasing rotation   large or small except that it decreases slightly with the increase 
in large values of the rotation of the system (curves I, III, IV, VI). For large rotations R0 
rises within a very short distance from the stationary plate to the value unity and 
oscillates about it. Fig. 1.b shows that phase angle  for the steady flow increases 
with increasing injection/suction parameter s for any value of rotation large or small. 
It is also clear that with increasing rotation,  , of the system the phase angle 0  
decreases and becomes approximately zero in the upper half of the channel for large 
rotation (curve IV, VI). A phase lag is observed for large rotation near the upper 
oscillating plate.  

The amplitude and the phase difference of shear stresses at the stationary plate 
 0  for the steady flow can be obtained as,  

2
0

2
00 yxr   ,  oxoyor  /tan 1 , (23) 

Where,  

     2112 // 210
rrrr

oyox eeererqi   .  

Here, ox  and oy  are, respectively, the shear stresses at the stationary plate due to 
the primary and secondary velocity components. The numerical values for the 
resultant shear stress and the phase angle , are listed in table-1. These values 
in table-1 clearly show that the amplitude  of the steady shear stress increases 
with increasing rotation, , of the system. An increase in the injection/suction 
parameter, s, leads to an increase of or  for small rotations and to a decrease for large 

rotations. The phase angle, or , decreases with increasing rotation of the system. For 

any rotation large or small the phase angle, or , increases with the increase of 
injection/suction parameter s. 

The solutions (18) and (19) together give the unsteady part of the flow. The 
unsteady primary and secondary velocity components u1   and v1   , respectively, 
for the fluctuating flow can be obtained as 



0

or or

or
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            tqqtalqalqtu sinImImcosReRe, 21211   ,  (24) 

            tqqtalqalqtv cosImImsinReRe, 21211   .  (25) 

The resultant velocity or amplitude and the phase difference of the unsteady flow 
are given by  

2
1

2
11 vuR  ,  11

1
1 /tan uv . (26) 

For the unsteady part, the resultant velocity or the amplitude, 1R  and the phase 
angle, 1 , are presented graphically in figure 2.a, b for the two cases of rotation, 
small (5,10) and   large (25,50). Figure 2.a shows that with increase of 
injection/suction parameter s  the resultant velocity 1R , decreases (curves I, II) for 
small rotations but increases (curves V, VI) for large rotations. For small values of   
the amplitude 1R , increases (curves I, III) with increase of rotation, however, for large 
values of rotation  , the amplitude 1R , increases (curves V, VII) in the vicinity of the 
stationary plate but decreases thereafter. Keeping the injection/suction parameter 
fixed, an increase in the frequency of oscillations  leads to a decrease of the 
resultant velocity 1R , (curves I, IV) for small values of rotation but to an increase of 1R
, (curves V, VIII) for large values of rotation.  

The Fig. 2.b exhibits that the phase angle 1 , increases (curves I, II) with the 
increase of injection/suction parameter s  in whole of the channel width for small 
rotations, however, for large rotations though it increases (curves V, VI) with s but the 
phase lead turns into a phase lag near the upper oscillating plate. The phase angle 1 , 
decreases with the increase of rotation may it be large (curves V, VII) or small (curves 
I, III). With the increase of the frequency of oscillations  the phase angle 1 , 
increases except near the oscillating plate where it decreases (curves I, IV) for small 
rotations. However, for large rotations 1  increases (curves V, VIII) with the increase of 
 and the phase lead turns into phase lag near the upper oscillating plate where it 
becomes approximately zero. 

For the unsteady part of the flow, the amplitude and the phase difference of shear 
stresses at the stationary plate ( =0) can be obtained as  

    010111 //     viui yx  which gives  (27) 

2
1

2
11 yxr  

,  xyr 11
1

1 /tan   .  (28) 

The amplitude r1  of the unsteady shear stresses are shown graphically in figure 3. 
This figure clearly shows that the amplitude, r1 , increases with increasing rotation 
of the system. For small rotations r1  first decreases (curves I, II) with the increase of 
injection/suction parameter s  for small frequency of oscillations  but then increases 
for large frequency of oscillations. For large rotation a clear cut decrease in r1  with s 
is observed in this figure (curves IV, V). The numerical value of the phase difference 

r1  are listed in Table 2. It is interesting to note from these values that the phase lead 
changes to phase lag with the increasing frequency of oscillations   but at the same 
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time the increasing rotation   restricts this effect of  . For small rotations the effect 
of injection/suction parameter on the phase lead or lag is insignificant. However, for 
large rotations the phase lead further increases with increasing injection/suction 
parameter s for all values of frequency of oscillations   large or small.  

Table 1: Values of or and for Various s and   

s    or  or  
2 5 2.5096 1.0275 
2 10 3.8268 0.9419 
2 25 6.3956 0.8851 
2 50 9.3162 0.8560 
4 5 2.9631 1.2121 
4 25 5.7741 0.9827 

Table 2: Values of r1  for Various s ,   and   

s      
0 5 10 15 20 25 

2 5 1.028 1.353 1.466 -1.218 -1.092 -1.028 
2 10 0.942 1.086 1.244 1.433 1.496 -1.337 
2 25 0.885 0.940 0.995 1.051 1.108 1.168 
2 50 0.856 0.883 0.910 0.936 0.963 0.991 
4 5 1.212 1.566 -1.276 -1.043 -0.889 -0.791 
4 25 0.983 1.043 1.102 1.162 1.223 1.286 

 

or

  

0R  s       
2     5          I 
4     5          II 
2    10          III 
2    25          IV 
4    25          V 
2    50          VI 

a 
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Fig. 1: a,b: Resultant Velocity 0R  and Phase Angle 0  Due to 0u  and 0v  

 
 

  

0  

s         
2     5     5       I 
4     5     5       II 
2    10     5       III 
2     5    10      IV 
2    25     5       V 
4    25     5       VI 
2    50     5       VII 
2    25    10       VIII 

1R  

  

a 

b 
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Fig. 2 a,b: Resultant Velocity 1R  and Phase Angle 1  Due to 1u  and 1v  

 

Fig. 3: The Amplitude r1  of Unsteady Shear Stresses for 4/t  

 

1  

  

s       
2     5          I 
4     5          II 
2    10          III 
2    25          IV 
4    25          V 
2    50          VI 
 

  

r1  

b 
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