
ISSN: 2395-6607, Vol. 1, No. 1 March 2015, pp. 35–40 

COLLISION RESISTANT ALTERNATE FORM OF TILLICH-
ZEMOR HASH FUNCTION WITH NEW GENERATORS  

Joju K.T.1 and Lilly P.L.2 
1Department of Mathematics, Prajyoti Niketan College, Pudukad 
2Department of Mathematics, St. Joseph’s College, Irinjalakuda 

E-mail: 1jojukt@gmail.com, 2sr.christy@gmail.com 

Abstract—At CRYPTO ’94, Tillich and Zemor proposed a family of hash functions, based on computing a 
suitable matrix product in groups of the form SL2(F2n). Markus Grassl, Ivana Illich, Spyros Magliveras and 
Rainer Steinwandt constructed a collision between palindrome bit strings of length 2n+2 and Christophe 
Petit, Jean-Jacques Quisquater found the second preimage for Tillich and Zemor’s construction. In this paper 
we construct a hash function by using different matrices for the image of the bits 0 and 1 and found the 
collision and second preimage for the new construction.  
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INTRODUCTION 

A cryptographic hash function can provide assurance of data integrity. A hash 
function is used to construct a short “finger print” of some data; if the data is altered, 
then the finger print will no longer be valid. Even if the data is stored in an insecure 
place, its integrity can be checked from time to time by recomputing the finger print 
and verifying that the finger print has not changed [3]  

A hash family is a four–tuple (X, Y, K, H) where the following conditions are 
satisfied: 

X is a set of possible messages 

Y is a finite set of possible message digests  

K, the key space, is a finite set of possible keys 

For each k ∈ K, there is a hash function 퐻 	∈ H. Each 퐻 : X → Y 

An unkeyed hash function is a function H: X → Y.An unkeyed hash function is a 
hash family in which there is only one possible key.  

Security of Hash Functions: [11] 

The following three properties are essential for a secured hash function. 

Preimage Resistance 

It should be computationally infeasible to find an input which hashes to a specified 
output. 

Second Preimage Resistance 

It should be computationally infeasible to find a second input that hashes to the same 
output of a specified input 

Collision Resistance 

It should be computationally infeasible to find two different inputs that hash to the 
same output. 
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Early suggestions (SHA family) did not really use any mathematical ideas apart 
from Merkle-Damgard [9] construction for producing collision resistant hash 
functions from collision resistant compression functions, the main idea was just to 
“create a mess” by using complex iterations. We have to admit that a”mess” might be 
good for hiding purposes, but only to some extent. 

At CRYPTO ’94, Tillich and Zemor [10] proposed a family of hash functions, based 
on computing a suitable matrix product in groups of the form SL2 (F2n).Tillich-Zemor 
suggested a mathematical hash function, which hash bit by bit. That is”0”bit is 
hashed to a particular 2x2 matrix A0and the “1” bit is hashed to another 2x2 matrix 
A1. For example 11000100 is hashed to the matrix A12A03A1A02.It is possible only when 
this pair of elements A0, A1 should be from an Algebraic structure. Tillich and Zemor 
use matrices A0, A1 from the group SL2(R) where R = F2[x]/(q(x)) [4]. Where F2 is the 
field of two elements, F2[x] is the ring of polynomials over F2 and (q(x)) is the ideal of 
F2[x] generated by an irreducible polynomial q(x) of degree n where n is a prime.  

For example  

q(x)=x167+x7+x6+x5+x4+x+1 [5]. 

Thus R=F2[x]/(q(x)) isomorphic to F2n the field with 2n elements.The matrices A0 
and A1 are the following: 

A0 =	 훼 1
1 0 	퐴 	= 	 훼 훼 + 1

1 1 , where ∝ is the root of the irreducible polynomial q(x). 

For the bitstring v = b1.....bm	∈ 푉= {0,1}*, where {0,1}*is the collection of bit strings 
of arbitrary length. The Tillich –Zemor hash function h' is defined as follows: 

hʹ (b1......bm) =	퐴 ......퐴 . 

In [7] Markus Grassl, Ivana Illich, Spyros Magliveras and Rainer Steinwandt 
constructed a collision between palindrome bit strings of length 2n+2 and in[2] 
Christophe Petit, Jean-Jacques Quisquater found the second preimage for Tillich and 
Zemor hash function. In [6] we defined the following hash function: 

Let B0 and B1 be the following matrices  

B0=A0-1 and B1=A1-1 then B0 =	 0 1
1 훼  and B1 =	 1 훼 + 1

1 훼 . 

For the bitstring v =	푏 … . . 푏 ∈	V we define the new hash function h as follows: 

 h (b1....bm) = 퐵 ...........퐵 . 

PALINDROME COLLISIONS 

Let v	∈ 푉 and |v| denote the length of the bitstring v.If v=b1....bm	∈	V is of length m, we 
denote vr = bm.....b1 the reversal of v. In our attack we will make use of palindromes, 
that is, bitstrings v	∈	V satisfying v=vr. 

In order to find the palindrome collision we use the matrices C0 =B0 and  

C1= BOB1B0-1. That is 

C0= 0 1
1 훼 	and C1= 0 1

1 훼 + 1  

We define H (b1....bm) =	퐶 .....퐶  
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Proposition 1 [6] 

Let v, vʹ	∈	V. Then h (v) = h(vʹ) if and only if H(v) = H(vʹ). 

The above proposition says that collision in h and H are equivalent. 

Now we work inside the group SL2(F2[x]) of unimodular matrices over the 
polynomial ring F2[x] rather than F2n.Let D0,D1	∈	SL2(F2[x]) with polynomial entries as 
follows: 

D0 =	 0 1
1 푥 , D1 =	 0 1

1 푥 + 1  and 

we define Hʹ: V	→	SL2 (F2[x]) by 

Hʹ (b1......bm) =	퐷 ......퐷 ∈	SL2 (F2[x]). 

That is Hʹ is defined as H,except that Hʹ (v)	∈	SL2(F2[x]). 

We apply H' to a particular subset of elements of V, namely, the set of all 
palindromes in V. 

Lemma 1 [6] 

Let v	∈	V be a palindrome and write Hʹ (v) =	 푎 푏
푐 푑 .  

Then b=c and d has degree, deg d= |v| and we have max. ( deg a, deg b)≤|v|. 

Define	휌: V→	F2[x] 2x2 is defined by 

휌(v) =Hʹ (0v0) +Hʹ (1v1). 

We are interested in evaluating 휌 modulo a given irreducible polynomial, because ρ 
(v) ≡	 0 0

0 0 	modq(x) if and only if  

H (0v0) = H (1v1) is indeed a collision in SL2(F2[x]/(q(x)))=G. 

Proposition 2[6] 

If v	∈	V is a palindrome of length |v|, then 휌(v) = 0 푑
푑 푑  where d	∈ F2[x] has degree |v|. 

Moreover, d is the lower right entry of Hʹ (v). 

Proposition 3[6] 

If v	∈ V is a palindrome of even length then Hʹ (v) = 푎 푏
푏 푑

	for some a, b, d	∈ F2[x]. 

Corollary 1 [6]  

Let v ∈ V be a palindrome of even length. Then ρ(v) = 0 푑
푑 푑

 for some d ∈ F2[x] with 

deg d = |v|/2. More specifically d2is the lower right entry of Hʹ(v). 

Corollary 2 [6] 

Let bn.....b1b1......bn ∈ V be a palindrome of length 2n.Then for 0≤ i≤ n, the square root 
pi of the lower right entry of Hʹ(bi.........b1b1......bi) is given by 
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	푝 	= 
1 푖푓	푖 = 0

푥 + 푏 + 1 푖푓	푖 = 1
(푥 + 푖)푝 + 푝 푖푓	1 < 푖 ≤ 푛

 

COLLISION AND EUCLIDEAN ALGORITHM 

Construction of Palindrome  

From corollaries 1 and 2 we see that the square roots of the lower right entries of 
Hʹ(b1b1), Hʹ(b2b1b1b2),Hʹ(b3b2b1b1b2b3),etc, satisfy Euclidean algorithm sequence(in 
reverse order) where each quocient is either x or x+1[2]. Those sequences are often 
called maximal length sequences for the Euclidean algorithm or maximal length 
Euclidean sequences and they have long been a topic of interest in number theory. 

Mesirov and Swweet [8] showed that, when q(x)∈ F[x] is irreducible there exist 
exactly two polynomials p(x) such that q(x) and p(x) are the first terms of a maximal 
length Euclidean sequence. They also provide an algorithm to compute them, which 
will be given below. 

Proposition 4 

(Mesirov and sweet). Given any irreducible polynomial q of degree n over F2, there is a 
sequence of polynomials pn,pn-1,.......,p0 with pn=q, and p0=1 and additionally the 
degree of pi is equal to i and pi≡ p i-2 mod p i-1. 

Note that once we know a polynomial p= pn-1 as mentioned in proposition 4 which 
matches our given polynomial pn = q, the Euclidean algorithm will uniquely compute 
the sequence  

pn, pn-1,......p1, p0=1. 

The quotients x + βi (i= 1,.....,n) occurring in Euclid’s algorithm allow us to derive 
the bits bi of the palindrome in corollary 2.  

We have p1= x+b1+1 and therefore b1=β1+1, while bi=βi for i>1. That is the bit β1 
has to be inverted. Thus the desired collision will be  

H (0βn......β1-1β1-1.......βn0) = H (1βn......β1-1β1-1.........βn1) 

Where, β1 -1 indicates the inversion of β1  

To Find the Maximal Length Euclidean Sequence 

1. Construct a matrix A ∈ 퐹( )×	 from the n+1 polynomials go = x0 mod q(x),  

gi = x i-1+x 2i-1+x 2i mod q(x) for i= 1,2,......,n 

Placing in the ith row of A the coefficients  

a i,0, a i,1,......a i,n-1 of the polynomial  

gi= a i,0+a i,1 x+......a i,n-1x n-1. 

2. Solve the linear system Aut = (10......01) where u = (u1.......un). 

3. Compute p(x) by multiplying q(x) by ∑ 푢 푥  and taking only the non negative 
powers of x. 
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COLLISIONS FOR SPECIFIED POLYNOMIALS 

Example 1.[6] 

Let q(x) = x2 + x + 1 be the irreducible polynomial. We have the following collisions 

H (011110) = 0 1
1 푥 + 1  = H (111111). 

H (000000) = 0 1
1 푥  = H (100001). 

Example 2.[6] 

Let q(x) = x3+x+1  

The collision are  

H (01111110) = 0 1
1 1 + 푋 =	H (11111111) and H (00100100) = H(10100101). 

By Proposition 1. Collision in h and H are equivalent. For higher degree irreducible 
polynomials q(x) we implement the attack in the computer algebra system Magma[1] 
on a standard PC.For each q(x) there will be two solutions for p(x) so we obtain two bit 
strings v1,v2 ∈{0,1}n with  

H (0vivir0) = h(1vivir1) for i=1,2. 

That is, we obtain two collisions of bit strings of length 2n+2.The value v2 can be 
obtain by reversing v1 followed by inverting the first and last bit. 

In example 1, v1 = 11, v2 = 00 

In example 2, v1 = 111, v2 = 010. 

NEW HASH FUNCTION 

As the function H is not collision resistant. We define a new hash function H1, which 
is collision resistant, as follows: 

H1 (b1....bm) = 푡푟퐵 ...........푡푟퐵 , where tr B0 = α and tr B1 = α +1. Now we prove 
that H1 is collision resistant. 

In example 1, we have the collisions  

H (011110) = 0 1
1 푥 + 1  = H (111111) and H (000000) = 0 1

1 푥  = H (100001). 

But H (011110) = α, H1 (111111) = 1 and H1 (000000) = 1, H1 (100001) = α+1. 

In example 2, we have the collisions  

H (01111110) = 0 1
1 1 + 푋 =	H (11111111) and H (00100100) = H (10100101). 

But H1 (01111110) ≠ H1 (11111111) and H1 (00100100) ≠ H1 (10100101).  

Hence H1 is collision resistant. Similarly we can verify collision resistance using 
The Magma Algebra System [1]. 
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