
ISSN: 2395-6607, Vol. 1, No. 1 March 2015, pp. 35–40

COLLISION RESISTANT ALTERNATE FORM OF TILLICH-
ZEMOR HASH FUNCTION WITH NEW GENERATORS

Joju K.T.1 and Lilly P.L.2
1Department of Mathematics, Prajyoti Niketan College, Pudukad
2Department of Mathematics, St. Joseph’s College, Irinjalakuda

E-mail: 1jojukt@gmail.com, 2sr.christy@gmail.com

Abstract—At CRYPTO ’94, Tillich and Zemor proposed a family of hash functions, based on computing a
suitable matrix product in groups of the form SL2(F2n). Markus Grassl, Ivana Illich, Spyros Magliveras and
Rainer Steinwandt constructed a collision between palindrome bit strings of length 2n+2 and Christophe
Petit, Jean-Jacques Quisquater found the second preimage for Tillich and Zemor’s construction. In this paper
we construct a hash function by using different matrices for the image of the bits 0 and 1 and found the
collision and second preimage for the new construction.

Keywords: Collision, Euclidean Algorithm, Groups, Hash Function, Irreducible Polynomial, Palindrome,
Preimage

INTRODUCTION

A cryptographic hash function can provide assurance of data integrity. A hash
function is used to construct a short “finger print” of some data; if the data is altered,
then the finger print will no longer be valid. Even if the data is stored in an insecure
place, its integrity can be checked from time to time by recomputing the finger print
and verifying that the finger print has not changed [3]

A hash family is a four–tuple (X, Y, K, H) where the following conditions are
satisfied:

X is a set of possible messages

Y is a finite set of possible message digests

K, the key space, is a finite set of possible keys

For each k ∈ K, there is a hash function 퐻 	∈ H. Each 퐻 : X → Y

An unkeyed hash function is a function H: X → Y.An unkeyed hash function is a
hash family in which there is only one possible key.

Security of Hash Functions: [11]

The following three properties are essential for a secured hash function.

Preimage Resistance

It should be computationally infeasible to find an input which hashes to a specified
output.

Second Preimage Resistance

It should be computationally infeasible to find a second input that hashes to the same
output of a specified input

Collision Resistance

It should be computationally infeasible to find two different inputs that hash to the
same output.

36 Journal of Theoretical and Computational Mathematics ISSN: 2395-6607, Vol. 1, No. 1 March 2015

Early suggestions (SHA family) did not really use any mathematical ideas apart
from Merkle-Damgard [9] construction for producing collision resistant hash
functions from collision resistant compression functions, the main idea was just to
“create a mess” by using complex iterations. We have to admit that a”mess” might be
good for hiding purposes, but only to some extent.

At CRYPTO ’94, Tillich and Zemor [10] proposed a family of hash functions, based
on computing a suitable matrix product in groups of the form SL2 (F2n).Tillich-Zemor
suggested a mathematical hash function, which hash bit by bit. That is”0”bit is
hashed to a particular 2x2 matrix A0and the “1” bit is hashed to another 2x2 matrix
A1. For example 11000100 is hashed to the matrix A12A03A1A02.It is possible only when
this pair of elements A0, A1 should be from an Algebraic structure. Tillich and Zemor
use matrices A0, A1 from the group SL2(R) where R = F2[x]/(q(x)) [4]. Where F2 is the
field of two elements, F2[x] is the ring of polynomials over F2 and (q(x)) is the ideal of
F2[x] generated by an irreducible polynomial q(x) of degree n where n is a prime.

For example

q(x)=x167+x7+x6+x5+x4+x+1 [5].

Thus R=F2[x]/(q(x)) isomorphic to F2n the field with 2n elements.The matrices A0
and A1 are the following:

A0 =	 훼 1
1 0 	퐴 	= 	 훼 훼 + 1

1 1 , where ∝ is the root of the irreducible polynomial q(x).

For the bitstring v = b1.....bm	∈ 푉= {0,1}*, where {0,1}*is the collection of bit strings
of arbitrary length. The Tillich –Zemor hash function h' is defined as follows:

hʹ (b1......bm) =	퐴퐴 .

In [7] Markus Grassl, Ivana Illich, Spyros Magliveras and Rainer Steinwandt
constructed a collision between palindrome bit strings of length 2n+2 and in[2]
Christophe Petit, Jean-Jacques Quisquater found the second preimage for Tillich and
Zemor hash function. In [6] we defined the following hash function:

Let B0 and B1 be the following matrices

B0=A0-1 and B1=A1-1 then B0 =	 0 1
1 훼 and B1 =	 1 훼 + 1

1 훼 .

For the bitstring v =	푏 … . . 푏 ∈	V we define the new hash function h as follows:

 h (b1....bm) = 퐵퐵 .

PALINDROME COLLISIONS

Let v	∈ 푉 and |v| denote the length of the bitstring v.If v=b1....bm	∈	V is of length m, we
denote vr = bm.....b1 the reversal of v. In our attack we will make use of palindromes,
that is, bitstrings v	∈	V satisfying v=vr.

In order to find the palindrome collision we use the matrices C0 =B0 and

C1= BOB1B0-1. That is

C0= 0 1
1 훼 	and C1= 0 1

1 훼 + 1

We define H (b1....bm) =	퐶퐶

ISSN: 2395-6607, Vol. 1, No. 1 March 2015 Journal of Theoretical and Computational Mathematics 37

Proposition 1 [6]

Let v, vʹ	∈	V. Then h (v) = h(vʹ) if and only if H(v) = H(vʹ).

The above proposition says that collision in h and H are equivalent.

Now we work inside the group SL2(F2[x]) of unimodular matrices over the
polynomial ring F2[x] rather than F2n.Let D0,D1	∈	SL2(F2[x]) with polynomial entries as
follows:

D0 =	 0 1
1 푥 , D1 =	 0 1

1 푥 + 1 and

we define Hʹ: V	→	SL2 (F2[x]) by

Hʹ (b1......bm) =	퐷퐷 ∈	SL2 (F2[x]).

That is Hʹ is defined as H,except that Hʹ (v)	∈	SL2(F2[x]).

We apply H' to a particular subset of elements of V, namely, the set of all
palindromes in V.

Lemma 1 [6]

Let v	∈	V be a palindrome and write Hʹ (v) =	 푎 푏
푐 푑 .

Then b=c and d has degree, deg d= |v| and we have max. (deg a, deg b)≤|v|.

Define	휌: V→	F2[x] 2x2 is defined by

휌(v) =Hʹ (0v0) +Hʹ (1v1).

We are interested in evaluating 휌 modulo a given irreducible polynomial, because ρ
(v) ≡	 0 0

0 0 	modq(x) if and only if

H (0v0) = H (1v1) is indeed a collision in SL2(F2[x]/(q(x)))=G.

Proposition 2[6]

If v	∈	V is a palindrome of length |v|, then 휌(v) = 0 푑
푑 푑 where d	∈ F2[x] has degree |v|.

Moreover, d is the lower right entry of Hʹ (v).

Proposition 3[6]

If v	∈ V is a palindrome of even length then Hʹ (v) = 푎 푏
푏 푑

	for some a, b, d	∈ F2[x].

Corollary 1 [6]

Let v ∈ V be a palindrome of even length. Then ρ(v) = 0 푑
푑 푑

 for some d ∈ F2[x] with

deg d = |v|/2. More specifically d2is the lower right entry of Hʹ(v).

Corollary 2 [6]

Let bn.....b1b1......bn ∈ V be a palindrome of length 2n.Then for 0≤ i≤ n, the square root
pi of the lower right entry of Hʹ(bi.........b1b1......bi) is given by

38 Journal of Theoretical and Computational Mathematics ISSN: 2395-6607, Vol. 1, No. 1 March 2015

	푝 	=
1 푖푓	푖 = 0

푥 + 푏 + 1 푖푓	푖 = 1
(푥 + 푖)푝 + 푝 푖푓	1 < 푖 ≤ 푛

COLLISION AND EUCLIDEAN ALGORITHM

Construction of Palindrome

From corollaries 1 and 2 we see that the square roots of the lower right entries of
Hʹ(b1b1), Hʹ(b2b1b1b2),Hʹ(b3b2b1b1b2b3),etc, satisfy Euclidean algorithm sequence(in
reverse order) where each quocient is either x or x+1[2]. Those sequences are often
called maximal length sequences for the Euclidean algorithm or maximal length
Euclidean sequences and they have long been a topic of interest in number theory.

Mesirov and Swweet [8] showed that, when q(x)∈ F[x] is irreducible there exist
exactly two polynomials p(x) such that q(x) and p(x) are the first terms of a maximal
length Euclidean sequence. They also provide an algorithm to compute them, which
will be given below.

Proposition 4

(Mesirov and sweet). Given any irreducible polynomial q of degree n over F2, there is a
sequence of polynomials pn,pn-1,.......,p0 with pn=q, and p0=1 and additionally the
degree of pi is equal to i and pi≡ p i-2 mod p i-1.

Note that once we know a polynomial p= pn-1 as mentioned in proposition 4 which
matches our given polynomial pn = q, the Euclidean algorithm will uniquely compute
the sequence

pn, pn-1,......p1, p0=1.

The quotients x + βi (i= 1,.....,n) occurring in Euclid’s algorithm allow us to derive
the bits bi of the palindrome in corollary 2.

We have p1= x+b1+1 and therefore b1=β1+1, while bi=βi for i>1. That is the bit β1
has to be inverted. Thus the desired collision will be

H (0βn......β1-1β1-1.......βn0) = H (1βn......β1-1β1-1.........βn1)

Where, β1 -1 indicates the inversion of β1

To Find the Maximal Length Euclidean Sequence

1. Construct a matrix A ∈ 퐹()×	 from the n+1 polynomials go = x0 mod q(x),

gi = x i-1+x 2i-1+x 2i mod q(x) for i= 1,2,......,n

Placing in the ith row of A the coefficients

a i,0, a i,1,......a i,n-1 of the polynomial

gi= a i,0+a i,1 x+......a i,n-1x n-1.

2. Solve the linear system Aut = (10......01) where u = (u1.......un).

3. Compute p(x) by multiplying q(x) by ∑ 푢 푥 and taking only the non negative
powers of x.

ISSN: 2395-6607, Vol. 1, No. 1 March 2015 Journal of Theoretical and Computational Mathematics 39

COLLISIONS FOR SPECIFIED POLYNOMIALS

Example 1.[6]

Let q(x) = x2 + x + 1 be the irreducible polynomial. We have the following collisions

H (011110) = 0 1
1 푥 + 1 = H (111111).

H (000000) = 0 1
1 푥 = H (100001).

Example 2.[6]

Let q(x) = x3+x+1

The collision are

H (01111110) = 0 1
1 1 + 푋 =	H (11111111) and H (00100100) = H(10100101).

By Proposition 1. Collision in h and H are equivalent. For higher degree irreducible
polynomials q(x) we implement the attack in the computer algebra system Magma[1]
on a standard PC.For each q(x) there will be two solutions for p(x) so we obtain two bit
strings v1,v2 ∈{0,1}n with

H (0vivir0) = h(1vivir1) for i=1,2.

That is, we obtain two collisions of bit strings of length 2n+2.The value v2 can be
obtain by reversing v1 followed by inverting the first and last bit.

In example 1, v1 = 11, v2 = 00

In example 2, v1 = 111, v2 = 010.

NEW HASH FUNCTION

As the function H is not collision resistant. We define a new hash function H1, which
is collision resistant, as follows:

H1 (b1....bm) = 푡푟퐵푡푟퐵 , where tr B0 = α and tr B1 = α +1. Now we prove
that H1 is collision resistant.

In example 1, we have the collisions

H (011110) = 0 1
1 푥 + 1 = H (111111) and H (000000) = 0 1

1 푥 = H (100001).

But H (011110) = α, H1 (111111) = 1 and H1 (000000) = 1, H1 (100001) = α+1.

In example 2, we have the collisions

H (01111110) = 0 1
1 1 + 푋 =	H (11111111) and H (00100100) = H (10100101).

But H1 (01111110) ≠ H1 (11111111) and H1 (00100100) ≠ H1 (10100101).

Hence H1 is collision resistant. Similarly we can verify collision resistance using
The Magma Algebra System [1].

40 Journal of Theoretical and Computational Mathematics ISSN: 2395-6607, Vol. 1, No. 1 March 2015

REFERENCES
Wieb Bosma, John Cannon, and Catherine Playoust, The Magma Algebra System I: The User Language.

Journal of Sympolic Computation, 24 (1997), pp. 235-265.
Christophe Petit and Jean-Jacques Quisquater, Preimage for the Tillich-Zemor hash function.

Proceedings of SAC 2010, pp. 282-301.
Daugles R Stinson, Cryptography theory and practice, Second Edition, Chapman & Hall/CRC.
John R Durbin, Modern Algebra, John Wiley & Sons.
Joju K.T and Sr. Lilly P.L Alternate form of Hashing with Polynomials. Proceedings of the International

workshop in Cyber Security, St. Joseph’s College, Irinjalakuda pp.2011,(IWCS2k11) 43-45, 2011
Joju K.T and Sr. Lilly P.L Tillich-Zemor Hash function with new Generators and Analysis International

Research Journal of Pure Algebra.,2(11), 338-343.
Markus Grassl, Ivana Ilic, Spyros Magliveras, and Rainer Steinwadt, Cryptanalysis of the Tillich-Zemor

Hash function, Cryptology ePrint Archive, Report 2009/376, 2009, http://eprint.iacr.org/.
Jill P. Mesirov and Melvin M. Sweet. Continued Fraction Expansions of Rational Expressions with

Irreducible Denominators in Characteristic 2. Journal of Number Theory, 27 (1987), pp.144-148.
Stefan Lucks, Design principles of Iterated Hash function, ePrint Archive: Report (2004), pp.1-22.
J.P.Tillich and G. Zemor, Hashing with SL2, Advances in Cryptology Lecture Notes in Computer Science,

vol. 839(1994), Springer-Verlag, pp. 40-49.
Vladimir Shpilrain, Hashing with polynomials, Proceedings of ICISC 2006, Springer (2006), pp. 22-28.

